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lonic liquids are believed to be a class of green solvents with
potential applications in the post-combustion capture of CO,.
However, some inherent defects of ionic liquids, such as high
cost and viscosity, significantly limit their industrial applica-
tions. Integrating ionic liquids with other materials represents a
promising strategy to adjust the physical properties of ionic
liquids and promote their real applications in industry. In this
mini review, the progress to date in the fabrication of hybrid
solvents based on ionic liquids for CO» capture was described.
The advantages and disadvantages associated with these
hybrid solvents were discussed. Future directions and pros-
pects for CO» capture with ionic liquids were also outlined.
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Introduction

There is growing political and economic pressure to
reduce emissions of CO; as a solution to the environ-
mental and climatic issues caused by global warming
[1]. Most CO; is emitted as a byproduct of burning
fossil fuels, and fossil fuels will still be the major source
of energy for industrial activity in the coming decades.
This face imposes a critical emphasis on the post-
combustion capture of CO; from industrial streams,
for which aqueous organic amines are widely used [2].
Unfortunately, organic amines are highly volatile and
corrosive, and the regeneration process is highly
energy-intensive. These defects make it urgent to

develop new materials that are green and sustainable to
replace organic amines for CO; capture. Within this
regard, ionic liquids (ILs) have attracted extensive
attention owing to their state-of-the-art properties, such
as wide liquid range, high thermal stability, extremely
low volatility, and structural designability [3,4]. To
date, great progress has been achieved in designing ILs
for CO; capture [5—7]. However, the high cost and
viscosity of ILs significantly limit their real applications
in industry. Integrating ILs with other materials pro-
vides a platform for adjusting the physical properties of
ILs and makes them more feasible for industrial ap-
plications. In this mini review, we summarized the
most recent advances in CO; capture with ILs, mainly
focusing on the fabrication of IL.-based hybrid solvents
for CO; absorption (see Fig. 1).

Normal IL-based hybrid solvents

Normal IL-organic mixed solvents

Initially, normal ILis were investigated as physical ab-
sorbents for CO; capture because of their relatively
weak interaction with CO;, [8,9]. In this case, 1Ls are
more favorable for use in the low-temperature capture of
CO; to offer high CO; capacity. However, the viscosity
of ILs increases exponentially as the temperature de-
creases, which makes it difficult to employ ILs directly
for the low-temperature capture of CO,. Taking
advantage of the low-viscosity of organic solvents and
non-volatility of ILs, Lei et al. [10] proposed a binary
mixture of methanol and 1-octyl-3-methylimidazolium
bis(trifluoromethylsulfonyl)imide ([omim][Tf,N]) for
the capture of CO; at temperatures down to 228.2 K.
This is a modification to the well-known Rectisol pro-
cess, which uses methanol as the capture medium.
Based on thermodynamic modeling with UNIFAC
(UNIversal QUAsiChemical Functional-group Activity
Coefficients) and process simulation with ASPEN Plus,
a conceptual process was designed for the capture of
CO; from syngas (see Fig. 2). It was found that the
overall energy consumption, operating cost, and heat
duty are reduced compared with the traditional Rectisol
process.

Generally, physical absorption is more energy-efficient
than chemical absorption because of the ease of
desorption. Therefore, it is important to extend the
work of Lei et al. [10] to the mixtures of many other ILs
and organic solvents in the future to supplement the
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A conceptual process for the low-temperature capture of CO, from syngas by the binary mixture of [omim][TfoN] and methanol. Reprinted with

permission from Ref. [10]. Copyright 2015 Elsevier Ltd.
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exploration of IL-based media for CO; capture. How-
ever, it is time-consuming to investigate all the possible
mixtures by experiments. It is suggested that thermo-
dynamic models and process programs be used first to
screen promising candidates, and then experimentally
validate the performance of optimized ones. The chal-
lenge is lack in the knowledge of the thermodynamic
properties of ILs, which is necessary for the imple-
mentation of thermodynamic models and process
programs.

Normal IL-amine solutions

To tailor the properties of normal ILs and make them
suitable for capture of CO; from dilute sources (e.g.,
flue gas), Noble et al. [11] dissolved commercially
available MEA in hydrophobic 1-hexyl-3-
methylimidazolium  bis(trifluoromethylsulfonyl)imide
([hmim][Tf,N]). Resultant mixtures are capable of the
rapid and reversible absorb 1 mol of CO;, per 2 mol of
MEA to give an insoluble carbamate precipitate. The
mechanism for reaction of amine compounds with CO;
is shown in Fig. 3. The [hmim][Tf,N]-MEA solution
shows some significant advantages over traditional
aqueous solutions of MEA for CO; capture: (1) the low
heat capacity of ILs saves a considerable amount of
energy during heat-induced desorption; (2) the evapo-
ration of water solvents is efficiently avoided by using
the extremely low-volatility ILs; and (3) the
precipitation-assisted capture process drives the reac-
tion of CO, with amine to offer both high CO; capacity
and fast absorption rate and provides the possibility of
separating the carbamate from the bulk ILs for energy-
efficient desorption.

lonic liquid—formulated hybrid solvents Huang et al. 69

Siaj et al. [12,13] then systematically investigated the
decomposition behavior of carbamate resulting from the
reaction of CO;, with diethanolamine (DEA) and 2-
amino-2-methyl-1-propanol (AMP) in [hmim][Tf,N]
solutions. They found that the separation of carbamate
as a solid phase offers a dual advantage: it requires less
volume to regenerate and it narrows the temperature
gap between CO; capture and amine regeneration. The
same group further found that the inclusion of ILs helps
suppress the corrosion of amines [14]. In light of the
high cost of lithium bis(trifluoromethylsulfonyl)imide
(LiTf;N), a raw material for the synthesis of [Tf,N]-
based ILs, Yu et al. [15] studied the absorption capa-
bility of CO; in solutions of MEA in 1-ethyl-3-
methylimidazolium tetrafluoroborate ([emim][BF4]),
1-butyl-3-methylimidazolium tetrafluoroborate
([bmim][BF4]), 1-ethyl-3-methylimidazolium hexa-
fluorophosphate  ([emim][PFg]), and 1-butyl-3-
methylimidazolium  hexafluorophosphate  ([bmim]
[PF¢l). They found that the CO; capacity in [emim]
[BF4]-MEA and [bmim][BF4]-MEA solutions is higher
than that in [emim][PFg]-MEA and [bmim][PFg]-MEA
solutions because the resulting carbamate is soluble in
[PF¢]-based ILs.

In spite of the impressive features of normal IL.-amine
solutions, it remains a challenge to design a capture
system in which gas—liquid absorption units and
liquid—solid separation units can be effectively inte-
grated. However, precipitated carbamate is an inter-
mediate that can be catalytically converted to urea
derivates [16], which are a class of important fine
chemicals in industry. Transforming carbamate to urea

Figure 3
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derivates can eliminate the energy-intensive desorp-
tion process, as well as the transportation and storage
of enriched CO; gas. Therefore, such a process
intensified with both the capture and the conversion
of CO; would be of great interest from an industrial
perspective.

Aqueous normal IL + amine solutions

Aqueous solutions of MEA and activated aqueous
MDEA solutions are the most widely used absorbents
for CO; capture in industry. They can be modified by
using normal ILs as additives to reduce the use of
water, which is highly volatile and has a high heat ca-
pacity. Moreover, the excellent physical affinity of ILs
with CO; is beneficial for the enhancement of CO;
capacity. Li et al. [17] proposed to use aqueous [bmim]
[BF4]+MEA solutions for CO; capture and found that
the mixed absorbent shows better stability and anti-
oxidant activity than do aqueous solutions of MEA. A
kinetic study demonstrated that [bmim][BF4] has an
active effect on the hydration of CO; [18]. Zhang et al.
[19] investigated the ability of different ILs — [bmim]
[BF4], 1-butyl-3-imidazolium nitrate ([bmim][NO3;]),
and 1-butyl-3-imidazolium chloride ([bmim][Cl]) — to
tailor the performance of piperazine (PZ)—activated
aqueous MDEA solutions for CO; capture. They found
that aqueous [bmim][BF4]+PZ 4+ MDEA solutions
show the largest CO; cyclic capacity. Calorimetric
measurements and theoretical modeling revealed that
the addition of [bmim][BF4] can reduce the enthalpy
of CO; absorption and reduce the sensible heat at
313 K by 30.1% and 20.3%, respectively.

Functionalized IL-based hybrid solvents
Organic/aqueous solutions of amine-functionalized
ILs

Inspired by amine chemistry (see Fig. 3) [20], an array
of amine-functionalized ILs has been specifically
designed for CO; capture [21—23]. The highest CO;
capacity has reached 1.69 mol/mol (13 wt%) in di(tri-
butylethylphosphonium)  iminodiacetate  ([Pa442]>
[TDA]), a aminopolycarboxylate-based IL. recently re-
ported by our group [23]. However, amine-
functionalized ILs suffer from a dramatic increase in
viscosity after they are complexed with CO; [24]. A
simple solution is to dilute amine-functionalized ILs
with other solvents to form mixed absorbents. For
example, Han et al. [25], Wu et al. [26], and Deng
et al. [27] dissolved choline prolinate ([Ch][Pro]),
diethylenetriamine hydrochloride ([DETA][~#HCI]),
and tetrabutylphosphonium glycinate ([P4444][Gly]),
respectively, in polyethylene glycol (PEG) for highly
efficient and reversible capture of CO,. Wu et al. [28],
Zhou et al. [29], and Zhang et al. [30] investigated the
absorption of CO; in a wide range of aqueous solutions
of amine-functionalized ILs, including amino acid ILs
and dual amine-functionalized ILis. These efforts

demonstrated that the addition of dilute solvents helps
enhance the adsorption/desorption rate of CO; and
increases its loading capacity.

Subsequently, aqueous solutions of amino acid ILs
were thoroughly studied as promising CO, absorbents
because of their low viscosity and high capacity
[31,32]. To provide a reliable basis for the process
design, kinetic data for CO;, absorption are necessary.
To this end, Luo et al. [33] and Wu et al. [34] quan-
titatively measured the absorption rate of CO; in the
aqueous solutions of some amino acid ILs, such as 1-
ethyl-3-methylimidazolium glycinate ([emim][Gly])
and 1-butyl-3-methylimidazolium glycinate ([bmim]
[Gly]). The results showed that the absorption rate of
CO; in aqueous solutions of amino acid ILs is slightly
lower than that in aqueous solutions of monoethanol-
amine (MEA) because of the higher viscosity of amino
acid ILs.

With the aid of quantum mechanical calculations,
Yamada [35] compared the solvation effects on CO;
absorption in aqueous solutions of MEA and [emim]
[Gly]. It was found that the dielectric constant of
aqueous solutions of MEA decreases with an increase in
CO; loading, which possibly contributes to the decrease
in the CO; absorption rate. In contrast, the energy di-
agram of the reaction between CO; and [emim][Gly]
barely depends on the solvation effect. As a result, the
trade-off relationship between the absorption rate and
absorption heat in the capture of CO, with aqueous
solutions of organic amines [36] does not necessarily
apply to aqueous solutions of amino acid ILs; this
finding explains the superiority of aqueous solutions of
amino acid ILs for CO; capture.

Besides PEG and water, other low-volatility and low-
viscosity organic solvents such as sulfolane, propylene
carbonate, N-methylpyrrolidone, and N,N-dime-
thylformamide can be used as dilute solvents for amine-
functionalized ILs. Although they are well-known
physical absorbents for CO; capture, their applications
in the facilitated absorption of CO; in amine-
functionalized ILs remain to be explored. Another
promising alternative is to dilute amine-functionalized
ILs with low-viscosity normal ILs. Since the heat ca-
pacity of ILs is much lower than that of water [37], using
ILs in place of water as the bulk solvents for amine-
functionalized ILs [38] can help reduce the energy
penalty for desorption. Some preliminary work also
investigated the absorption of CO; in IL solutions of 1-
ethyl-3-methylimidazolium  acetate  ([emim][Ac])
[39,40], another type of functionalized IL that exhibits
chemical reactivity with CO;. Therefore, it is suggested
to extensively investigate other organic solvents and
normal ILs as dilute solvents for amine-functionalized
ILs in the future.
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Aqueous amine-functionalized IL + amine solutions
The reaction of CO; with primary or secondary amines is
subject to 1:2 stoichiometry iz the carbamate route;
however, the reaction of CO; with tertiary amines in the
presence of water is subject to 1:1 stoichiometry viz the
bicarbonate route (see Fig. 3) [20]. The reaction rate of
CO; with tertiary amines is much slower than its reac-
tion rate with primary or secondary amines. Therefore,
primary or secondary amines are commonly used as ac-
tivators for aqueous solutions of tertiary amines in the
traditional amine-scrubbing process to offer both high
CO;, capacity and a fast absorption rate.

Inspired by this fact, Wu et al. [41] proposed to use
amino acid ILs as the activators of aqueous solutions of
methyldiethanolamine (MDEA) for CO; capture. The
amine group of amino acid can react quickly with CO; to
form zwitterions, which will transfer protons to MDEA,
and the absorption rate of CO; is therefore increased
greatly in comparison with aqueous solutions of MDEA
(see Fig. 4). They suggested that tetramethylammo-
nium glycinate ([N1111][Gly]) is highly attractive as the
activator because of its low cost. Subsequently, the ef-
fects of [N1111][Gly] and MDEA concentrations on CO;
capacity, regeneration performance, and absorption rate
were investigated systematically [42,43]. Compared
with traditional MEA-activated aqueous MDEA solu-
tions, amino acid IL—activated aqueous MDEA solu-
tions show higher stability during absorption-desorption
cycles owing to the negligible volatility of the ILs, yet
still exhibit comparable performance for CO; absorption
and desorption.

Based on the work of Wu et al. [41—43], Fu et al. [44]
further evaluated the performance of [bmim][Gly]—
activated aqueous MDEA solutions for CO; capture.

Figure 4
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They concluded that the optimized mass fraction of
[bmim][Gly] is 0.10—0.15 and the total mass fraction of
[bmim][Gly] + MDEA is ~0.5 when the absorption
capacities, absorption rates, and viscosities of absorbents
are comprehensively taken into account. Similarly, Jing
et al. [45,46] found that the addition of [N1111][Gly] or
1-hexyl-3-methylimidazolium glycinate ([hmim][Gly])
into aqueous solutions of AMP enhances the reactivity
of AMP with CO,, and the kinetics region is considered
to be a fast pseudo-first order.

Other functionalized ILs with chemical reactivity with
CO;, such as 1-hydroxyethyl-3-methyl imidazolium
glycinate ([HOemim][Gly]) [47,48] and [emim][Ac]
[49] were also investigated as additives to aqueous so-
lutions of MEA for CO; capture. Those studies proved
that the inclusion of functionalized ILs is a viable
strategy to tailor the properties of aqueous solutions of
amines and their performance for CO; capture.

Conclusions

In summary, the most recent progress in the fabrication
of 1L-formulated hybrid solvents for CO; capture was
reviewed. Five classes of hybrid solvents were discussed:
normal IL-organic mixed solvents, normal Il.-amine
solutions, aqueous normal ILL 4+ amine solutions,
organic/aqueous solutions of amine-functionalized ILs,
and aqueous amine-functionalized IL. 4+ amine solu-
tions. Integrating ILLs with other materials was demon-
strated to be an effective method of overcoming the
high viscosity of ILs and making them more applicable
in industrial use. Obviously, IL.-based hybrid solvents
exhibit significant advantages over aqueous solutions of
amines in many aspects, especially in reducing the vol-
atile loss of solvents and reducing energy consumption.
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Therefore, employing I1.-based hybrid solvents for CO;
capture is believed to be a green and sustainable
approach. Although the high cost of ILs is still a chal-
lenge, the operation cost of CO; capture with IL.-based
hybrid solvents is expected to be much lower than the
cost of the traditional amine-scrubbing process.
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